
Introduction	to	programming
using	Python

Session	10
Matthieu	Choplin

matthieu.choplin@city.ac.uk

http://moodle.city.ac.uk/


1

http://mattchoplin.com/python_city/index.html
mailto:matthieu.choplin@city.ac.uk
http://moodle.city.ac.uk/
http://mattchoplin.com/python_city/session1000.html#

Objectives
Debugging
Using	a	virtual	environment
Testing
Understand	the	purpose	of	using	Version	Control	System
Introduction	to	Database	Connection


2

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Debugging
What	is	the	program	supposed	to	do?
Is	it	doing	what	it	is	expected	to	do?
Why	not?	Investigate...


3

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

2	ways	of	debugging
Naive	debugging
Use	the	print()	function,	sometimes	it	is	enough

Smarter	debugging
Use	a	debugger,	i.e.	pdb	and	insert	a	breakpoint
A	breakpoint	is	an	intentional	stopping	or	pausing	place
in	a	program.	It	is	also	sometimes	simply	referred	to	as	a
pause.
You	set	it	by	writing	the	following	within	your	program

import	pdb;	pdb.set_trace()


4

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Commands	for	using	pdb
list	(l)	List	11	lines	around	the	current	line	(five	before	and
five	after).	Using	list	with	a	single	numerical	argument	lists
11	lines	around	that	line	instead	of	the	current	line.
next	(n)	Execute	the	next	line	in	the	file.	This	allows	you	to
go	line	by	line	and	inspect	the	state	of	the	code	at	that
point.
continue	(c)	Exit	out	of	the	debugger	but	still	execute	the
code.
step	into	(s)	to	go	into	the	execution	call	of	an	other
function

To	go	further:	https://pymotw.com/3/pdb/


5

http://mattchoplin.com/python_city/index.html
https://pymotw.com/3/pdb/
http://mattchoplin.com/python_city/session1000.html#

Exercise:	debug	this	code	using	a
breakpoint	or	a	print	statement

import	random

def	sort_list(my_list):
				my_list	=	my_list.sort()
				return	my_list

if	__name__	==	'__main__':
				#	create	and	shuffle	a	list
				my_list	=	list(range(9))
				random.shuffle(my_list)

				#	sort	the	list
				my_list	=	sort_list(my_list)
				print(my_list)		#	[0,	1,	2,	3,	4,	5,	6,	7,	8]


6

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Using	a	virtual	environment
Some	applications	use	a	complete	dedicated	machine	to	be
installed	and	run
But	you	may	want	to	run	different	python	versions	with
different	libraries	on	the	same	machine
From	Python3.6,	you	can	use:

python3	-m	venv	/path/to/new/virtual/environment


7

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Using	a	virtual	environment:	Note
Before	Python3.6,	you	could	use	pyvenv:

Before	pyvenv,	we	would	use	an	external	library	called
virtualenv.	If	you	are	working	with	python2,	this	is	what
you	should	use
More	on	virtual	environment:

pyvenv	/path/to/new/virtual/environment

https://docs.python.org/3.7/library/venv.html


8

http://mattchoplin.com/python_city/index.html
https://docs.python.org/3.7/library/venv.html
http://mattchoplin.com/python_city/session1000.html#

Virtualenv	for	Python2	programs
If	not	installed,	install	it	with	pip

Create	the	virtual	environment

Activate	it

Install	the	required	libraries

pip	install	virtualenv

virtualenv	-p	/path/to/python2.7	venv

source	venv/bin/activate

pip	install	openpyxl


9

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Virtualenv	in	Pycharm


10

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Testing
You	want	your	program	to	be	tested	automatically
Each	time	you	change	something	in	your	program,	there	is
a	risk	to	break	it
So,	you	should	test	systematically.
Different	types	of	testing:	unit	testing,	integration	testing,
exploratory	testing...


11

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Unit	testing
Unit	testing	consist	of	testing	the	smallest	part	of	your
application,	usually	a	function	or	a	class
To	do	do	that	in	python,	you	can	use	the	unittest	library


12

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Example	(1)
We	have	a	function	sum_two_numbers(a,	b)	that	takes	2
numbers	in	arguments	and	returns	their	sum

We	call	it	like	this,	and	put	the	result	in	a	variable:

How	to	test	it	automatically?

#	simple_function.py
def	sum_two_numbers(a,	b):
				return	a	+	b

sum_nb	=	sum_two_numbers(1,	2)
print(sum_nb)


13

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Example	(2)
#	test_simple_functions.py
import	unittest
from	simple_function	import	sum_two_numbers

class	SimpleTestClass(unittest.TestCase):

				def	test_sum_two_numbers(self):
								self.assertEqual(sum_two_numbers(1,	2),	3)

if	__name__	==	'__main__':
				unittest.main()


14

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Example	(3)	-	Explanation
You	can	download	the	files	there	 	and

What	is	important	when	writing	a	test:
The	name	of	the	test	file	must	start	with	test_,	so	that	we
understand	that	it	is	a	test	file
We	import	the	unittest	library	and	define	a	class
inheriting	from	unittest.TestCase
The	tests	function	are	within	such	classes,	note	that	the
name	of	the	test	method	must	also	begin	with	test_
Once	you	have	executed	your	use	case,	you	need	to
check	if	the	result	is	correct	with	assertion	methods
(that	are	actually	made	available	by	the	the	parent	class).

simple_function.py
test_simple_functions.py


15

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/simple_function.py
http://mattchoplin.com/python_city/exercises/test_simple_functions.py
http://mattchoplin.com/python_city/session1000.html#

Exercise:	Create	a	test
Create	a	test	for	the	sort_list()	function	of	the	1st	exercise

1.	 Create	an	appropriate	test	file
2.	 Import	the	unittest	library
3.	 Import	the	 	where	the	sort_list()	function	is	defined
4.	 Create	a	class	inheriting	from	unittest.TestCase	with	an
appropriate	name

5.	 Create	a	function	that	is	going	to	test	the	sort_list()
function	with	an	

6.	 At	the	end	of	the	test	file,	write	the	following:

file

assert	method

if	__name__	==	'__main__':
				unittest.main()


16

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/sorting_list.py
https://docs.python.org/3/library/unittest.html#assert-methods
http://mattchoplin.com/python_city/session1000.html#

The	setUp()	method
Method	called	to	prepare	the	test	fixture.	This	is	called
immediately	before	calling	the	test	method.	The	default
implementation	does	nothing.


17

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

The	tearDown()	method
Method	called	immediately	after	the	test	method	has	been
called	and	the	result	recorded.	This	is	called	even	if	the	test
method	raised	an	exception.	The	default	implementation
does	nothing.


18

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

The	assert	methods

Many	others:
https://docs.python.org/3.6/library/unittest.html

19

http://mattchoplin.com/python_city/index.html
https://docs.python.org/3.6/library/unittest.html#unittest.TestCase.assertEqual
http://mattchoplin.com/python_city/session1000.html#

Solution
session_10_debugging_solution.py

test_session_10_debugging_solution.py


20

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/session_10_debugging_solution.py
http://mattchoplin.com/python_city/exercises/test_session_10_debugging_solution.py
http://mattchoplin.com/python_city/session1000.html#

Rules	for	good	unit	tests
run	completely	by	itself,	without	any	human	input.	Unit
testing	is	about	automation.
determine	by	itself	whether	the	function	it	is	testing	has
passed	or	failed,	without	a	human	interpreting	the	results
run	in	isolation,	separate	from	any	other	test	cases	(even	if
they	test	the	same	functions).	Each	test	case	is	an	island

NB:	Pycharm	can	also	help	you	write	unittest:	see	here


21

http://mattchoplin.com/python_city/index.html
https://confluence.jetbrains.com/display/PYH/Creating+and+running+a+Python+unit+test
http://mattchoplin.com/python_city/session1000.html#

Measuring	your	code	coverage
You	can	use	the	module	

Use	coverage	run	to	run	your	program	and	gather	data:

Use	coverage	report	to	report	on	the	results:

Also	possible	

coverage

$	coverage	run	my_program.py	arg1	arg2

$	coverage	report	-m

in	Pycharm


22

http://mattchoplin.com/python_city/index.html
https://pypi.python.org/pypi/coverage
https://www.jetbrains.com/help/pycharm/2016.1/running-with-coverage.html
http://mattchoplin.com/python_city/session1000.html#

Version	Control	System,	why
Keep	track	of	the	changes	happening	in	your	project
Experiment	things	and	making	changes	with	confidence,
and	even	reverting	when	needed.
Work	in	team	with	files	and	directory	structure	that	are
consistent	for	all	team	members	and	communicating
Understand	who	made	a	change	and	why	it	happened


23

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Version	Control	System,	how
Different	tools	exist	but	the	most	common	used	today	is
Git	that	you	can	use	with	Github.com	or	BitBucket.com
Git	is	a	decentralized	VCS,	as	opposed	to	SVN	(the	previous
generation	of	VCS)
Example	of	a	branching	strategy:	the	Feature	Branch
Workflow


24

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

To	go	further	on	using	a	VCS
See	the	different	workflow	strategies	here:
https://www.atlassian.com/git/tutorials/comparing-
workflows/
Learn	the	git	command


25

http://mattchoplin.com/python_city/index.html
https://www.atlassian.com/git/tutorials/comparing-workflows/
https://try.github.io/levels/1/challenges/1
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(1)

You	will	use	databases	when	you	want	to	structure	your
data	using	tables	and	fields	and	persist	them	in	memory.
The	data	stored	in	database	will	remain	even	if	you	close
your	program.
You	can	visualize	what	a	database	is	by	comparing	it	to	a
spreadsheet	where	the	file	will	be	the	table,	the	header	of
the	rows	will	be	the	fields	or	columns	and	the	rest	of	the
rows	will	be	the	data	stored	in	this	table
The	simplest	version	of	SQL	is	SQLite,	we	can	interact	with
it	through	the	module	sqlite3

26

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(2)

We	need	to	import	the	module	and	connect	to	a	database
(that	will	be	created	if	it	does	not	exist).

NB:	the	data	created	will	be	stored	in	the	file
test_database.db	that	is	actually	the	database

import	sqlite3

connection	=	sqlite3.connect("test_database.db")


27

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(3)

We	then	need	a	cursor	to	execute	commands	on	the	database

import	sqlite3

connection	=	sqlite3.connect("test_database.db")
cursor	=	connection.cursor()
#	We	create	our	first	TABLE	People	that	will
#	store	the	field	FirstName,	LastName	and	Age
cursor.execute(
				"CREATE	TABLE	People("
				"FirstName	TEXT,	"
				"LastName	TEXT,	"
				"AGE	INT)")


28

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(4)

Imagine	that	the	TABLE	we	have	created	is	like	a	spreadsheet
file	ready	to	take	data

It	means	that	we	can	now	insert	data	into	this	table	with	the
"INSERT"	command

cursor.execute("INSERT	INTO	People	"
															"VALUES	('Ron',	'Obvious',	42)")
#	we	have	to	commit	to	actually
#	save	the	record	in	database
connection.commit()


29

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(5)

When	working	with	database,	it	is	a	good	idea	to	use	the	with
keyword	to	simplify	your	code,	similar	to	how	we	used	the
with	to	open	files

Also,	you	will	no	longer	need	to	use	the	commit()	explicitly

with	sqlite3.connect("test_database.db")	as	connection:
	 #	perform	any	SQL	operation


30

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(6)

Imagine	that	you	want	to	concatenate	a	string	with	a	SQL
command

Do	not	do	this:

first_name,	last_name,	age	=	'John',	'Doe',	21
with	sqlite3.connect("test_database.db")	as	connection:
				cursor	=	connection.cursor()
				cursor.execute(
								"INSERT	INTO	People	VALUES"
								"('"+	first_name	+	"',	'"	+	last_name	+	"',	"	+	str(age)	+	")")


31

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(7)

The	database	is	correctly	updated,	you	can	check	that	with
the	following	command

with	sqlite3.connect("test_database.db")	as	connection:
				cursor	=	connection.cursor()
	 cursor.execute("SELECT	*	FROM	People")
				rows	=	cursor.fetchall()
				print(rows)


32

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(8)

Using	the	same	method	as	2	slides	before,	what	happen	if	we
try	to	add	a	user	with	the	LastName	"O'Connor"?

We	will	get	an	error	because	the	"'"

first_name,	last_name,	age	=	'John',	'O\'Connor',	21
with	sqlite3.connect("test_database.db")	as	connection:
				cursor	=	connection.cursor()
				cursor.execute(
								"INSERT	INTO	People	VALUES"
								"('"+	first_name	+	"',	'"	+	last_name	+	"',	"	+	str(age)	+	")")


33

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(9)


34

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(10)

To	avoid	SQL	injection,	use	the	following	instead:

first_name,	last_name,	age	=	'John',	'O\'Connor',	21
with	sqlite3.connect("test_database.db")	as	connection:
				cursor	=	connection.cursor()
				cursor.execute(
								"INSERT	INTO	People	VALUES"
								"(?,	?,	?)",	(first_name,	last_name,	age))
				cursor.execute("SELECT	*	FROM	People")
				rows	=	cursor.fetchall()
				print(rows)


35

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session1000.html#

Introduction	to	SQL	Database	Connection
(11)

The	question	marks	act	as	a	placeholder	for	the	(first_name,
last_name,	age)	tuple;	this	is	called	a	parameterized
statement.	You	should	always	used	parameterized	SQL
statement

File	used	for	the	example:	test_db.py


36

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/test_db.py
http://mattchoplin.com/python_city/session1000.html#

Exercise
Populate	the	database	with	additional	records
Display	the	People	who	are	older	than	18	using	a	

	and	a	cr.fetchall()
select

command


37

http://mattchoplin.com/python_city/index.html
http://www.w3schools.com/sql/sql_where.asp
http://mattchoplin.com/python_city/session1000.html#

What's	next?
The	best	way	to	learn	is	by	doing	a	python	project

Look	at	the	 	and	try	to	build
something	around	them

You	can	also	train	yourself	by	doing	some	mathematical
challenges	on	the	 	or	the	
website.

You	can	host	your	project	on	Github	or	Bitbucket	and	

popular	python	modules

Project	Euler Python	Challenge

learn
the	git	command


38

http://mattchoplin.com/python_city/index.html
https://wiki.python.org/moin/UsefulModules
https://projecteuler.net/
http://www.pythonchallenge.com/
https://try.github.io/levels/1/challenges/1
http://mattchoplin.com/python_city/session1000.html#

