
Introduction	to	programming
using	Python

Session	5
Matthieu	Choplin

matthieu.choplin@city.ac.uk

http://moodle.city.ac.uk/


1

http://mattchoplin.com/python_city/index.html
mailto:matthieu.choplin@city.ac.uk
http://moodle.city.ac.uk/
http://mattchoplin.com/python_city/session500.html#

Objectives
To	come	back	on	the	definition	of	functions
To	invoke	value-returning	functions
To	invoke	functions	that	does	not	return	a	value
To	pass	arguments	by	values
To	develop	reusable	code	that	is	modular,	easy	to	read,	easy	to	debug,	and	easy	to
maintain
To	create	modules	for	reusing	functions
To	determine	the	scope	of	variables
To	define	functions	with	default	arguments
To	return	multiple	values	from	a	function
To	apply	the	concept	of	function	abstraction	in	software	development
To	design	and	implement	functions	using	stepwise	refinement


2

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Defining	and	Calling	Functions
A	function	is	a	collection	of	statements	that	are	grouped
together	to	perform	an	operation.


3

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

How	a	function	gets	called

Objects

Print	output	(drag	lower	right	corner	to	resize)

Frames

Python	3.3

1 def	max(num1,	num2):
2 				#	Return	the	max	between	two	numbers	
3 				if	num1	>	num2:
4 								result	=	num1
5 				else:
6 								result	=	num2
7
8 				return	result
9

10 def	main():
11 				i	=	5
12 				j	=	2
13 				k	=	max(i,	j)	#	Call	the	max	function
14 				print("The	maximum	between",	i,	"and",	j,	"is",	k)
15
16 main()	#	Call	the	main	function

	line	that	has	just	executed

	next	line	to	execute

<	Back 	 Step	1	of	14 	 Forward	>

Visualized	using	Online	Python	Tutor	by	Philip	Guo
4

http://mattchoplin.com/python_city/index.html
http://pythontutor.com/
http://www.pgbovine.net/
http://mattchoplin.com/python_city/session500.html#

Functions	With/Without	Return	Values
A	function	with	the	return	keyword	explicitly	return	a
value.	For	example	the	function	max()	in	the	previous
program.
A	function	does	something	but	does	not	return	a	value.	For
example	the	function	main()	in	the	previous	program.


5

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example	of	a	function	that	does	something
without	returning	a	value

def	printGrade(score):
				#	Print	grade	for	the	score
				if	score	>=	90.0:
								print('A')
				elif	score	>=	80.0:
								print('B')
				elif	score	>=	70.0:
								print('C')
				elif	score	>=	60.0:
								print('D')
				else:
								print('F')

def	main():
				score	=	eval(input("Enter	a	score:	"))
				print("The	grade	is	",	end	=	"")
				printGrade(score)

main()	#	Call	the	main	function
6

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example	of	a	function	that	returns	a	value
def	getGrade(score):
				#	Return	the	grade	for	the	score
				if	score	>=	90.0:
								return	'A'
				elif	score	>=	80.0:
								return	'B'
				elif	score	>=	70.0:
								return	'C'
				elif	score	>=	60.0:
								return	'D'
				else:
								return	'F'

def	main():
				score	=	eval(input("Enter	a	score:	"))
				print("The	grade	is",	getGrade(score))

main()	#	Call	the	main	function


7

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

The	None	Value
A	function	that	does	not	return	a	value	is	known	as	a	void
function.	In	Python,	such	function	returns	a	special	None.

 	 	Remix
	

  

  main.py 

def sum(number1, number2):
 total = number1 + number2

print(sum(1, 3))

1
2
3
4


8

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Passing	Arguments	by	Positions
Suppose	you	have	the	following	function:

What	is	the	ouput	of	nPrintln("Welcome	to	Python",	5)?

What	is	the	ouput	of	nPrintln(15,	"Computer	Science")?

What	is	wrong?	How	to	fix?

def	nPrintln(message,	n):
				for	i	in	range(0,	n):
								print(message)


9

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Keyword	Arguments
With	the	same	function:

What	is	the	ouput	of	nPrintln(message="Welcome	to
Python",	n=5)

What	is	the	ouput	of	nPrintln(n	=	4,	message	=	"Computer
Science")

What	is	wrong?	How	to	fix?

def	nPrintln(message,	n):
				for	i	in	range(0,	n):
								print(message)


10

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Pass	by	Value
In	Python,	all	data	are	objects.	A	variable	for	an	object	is
actually	a	reference	to	the	object.	When	you	invoke	a
function	with	a	parameter,	the	reference	value	of	the
argument	is	passed	to	the	parameter.	This	is	referred	to	as
pass-by-value.	For	simplicity,	we	say	that	the	value	of	an
argument	is	passed	to	a	parameter	when	invoking	a	function.
Precisely,	the	value	is	actually	a	reference	value	to	the	object.

If	the	argument	is	a	number	or	a	string,	the	argument	is	not
affected,	regardless	of	the	changes	made	to	the	parameter
inside	the	function.


11

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example

Objects

Print	output	(drag	lower	right	corner	to	resize)

Frames

Python	3.3

1 def	main():
2 				x	=	1
3 				print("Before	the	call,	x	is",	x)
4 				increment(x)
5 				print("After	the	call,	x	is",	x)
6
7 def	increment(n):	
8 				n	+=	1
9 				print("n	inside	the	function	is",	n)

10
11 main()	#	Call	the	main	function

	line	that	has	just	executed

	next	line	to	execute

<	Back 	 Step	1	of	13 	 Forward	>

Visualized	using	Online	Python	Tutor	by	Philip	Guo


12

http://mattchoplin.com/python_city/index.html
http://pythontutor.com/
http://www.pgbovine.net/
http://mattchoplin.com/python_city/session500.html#

Modularizing	Code
Functions	can	be	used	to	reduce	redundant	coding	and
enable	code	reuse.	Functions	can	also	be	used	to	modularize
code	and	improve	the	quality	of	the	program.

Example,	download	the	following	files	and	put	them	in	the
current	Pycharm	project	(right	click	and	save	as):

GCDFunction.py
TestGCDFunction.py


13

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/GCDFunction.py
http://mattchoplin.com/python_city/exercises/TestGCDFunction.py
http://mattchoplin.com/python_city/session500.html#

Exercise:	Use	the	isPrime	Function
The	program	 	(right	click	and	save
as)	provides	the	isPrime(number)	function	for	testing
whether	a	number	is	prime.

Use	this	function	to	find	the	number	of	prime	numbers	less
than	10,000.

Reuse	the	function	in	the	same	file
Import	the	function	in	an	other	file

PrimeNumberFunction.py


14

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/PrimeNumberFunction.py
http://mattchoplin.com/python_city/session500.html#

Using	the	function	in	the	same	file

 Solution


15

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Import	the	function	from	an	other	file

 Solution


16

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Scope	of	Variables
Scope:	the	part	of	the	program	where	the	variable	can	be
referenced.

A	variable	created	inside	a	function	is	referred	to	as	a	local
variable.	Local	variables	can	only	be	accessed	inside	a
function.	The	scope	of	a	local	variable	starts	from	its	creation
and	continues	to	the	end	of	the	function	that	contains	the
variable.

In	Python,	you	can	also	use	global	variables.	They	are	created
outside	all	functions	and	are	accessible	to	all	functions	in
their	scope.


17

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example	1
 	 	Remix

	
  

  main.py 

globalVar = 1
def f1():
 localVar = 2
 print(globalVar)
 print(localVar)
f1()
print(globalVar)
print(localVar) # Out of scope. This gives an error

1
2
3
4
5
6
7
8
9


18

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example	2
 	 	Remix

	
  

  main.py 

x = 1
def f1():
 x = 2
 print(x) # Displays 2
f1()
print(x) # Displays 1

1
2
3
4
5
6
7


19

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example	3
 	 	Remix

	
  

  main.py 

x = int(input("Enter a number: "))
if (x > 0):
 y = 4
print(y) # This gives an error if y is not created

1
2
3
4
5


20

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example	4
 	 	Remix

	
  

  main.py 

sum = 0
for i in range(0, 5):
 sum += i
print(i)

1
2
3
4
5


21

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Example	5
 	 	Remix

	
  

  main.py 

x = 1
def increase():
 global x
 x = x + 1
 print(x) # Displays 2
increase()
print(x) # Displays 2

1
2
3
4
5
6
7
8


22

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Default	Arguments
Python	allows	you	to	define	functions	with	default	argument
values.	The	default	values	are	passed	to	the	parameters	when
a	function	is	invoked	without	the	arguments.

 	 	Remix
	

  

  main.py 

def printArea(width = 1, height = 2):
 area = width * height
 print("width:", width, "\theight:", height, "\tarea:", area)

printArea() # Default arguments width = 1 and height = 2
printArea(4, 2.5) # Positional arguments width = 4 and height = 2.5
printArea(height = 5, width = 3) # Keyword arguments width
printArea(width = 1.2) # Default height = 2
printArea(height = 6.2) # Default widht = 1

1
2
3
4
5
6
7
8
9

10


23

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Returning	Multiple	Values
Python	allows	a	function	to	return	multiple	values.	The
following	program	defines	a	function	that	takes	two	numbers
and	returns	them	in	non-descending	order.

 	 	Remix
	

  

  main.py 

def sort(number1, number2):
 if number1 < number2:
 return number1, number2
 else:
 return number2, number1

n1, n2 = sort(3, 2)
print("n1 is", n1)
print("n2 is", n2)

1
2
3
4
5
6
7
8
9

10


24

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Function	Abstraction
You	can	think	of	the	function	body	as	a	black	box	that
contains	the	detailed	implementation	for	the	function.


25

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Benefits	of	Functions
Write	a	function	once	and	reuse	it	anywhere.
Information	hiding.	Hide	the	implementation	from	the	user.
Reduce	complexity.


26

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Stepwise	Refinement
The	concept	of	function	abstraction	can	be	applied	to	the
process	of	developing	programs.	When	writing	a	large
program,	you	can	use	the	"divide	and	conquer"	strategy,	also
known	as	stepwise	refinement,	to	decompose	it	into
subproblems.	The	subproblems	can	be	further	decomposed
into	smaller,	more	manageable	problems.


27

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

PrintCalendar	Case	Study
Let	us	use	the	PrintCalendar	example	to	demonstrate	the
stepwise	(or	divide-and-conquer)	refinement	approach.
Suppose	you	write	a	program	that	displays	the	calendar	for	a
given	month	of	the	year.	The	program	prompts	the	user	to
enter	the	year	and	the	month,	and	then	it	displays	the	entire
calendar	for	the	month,	as	shown	in	the	following	sample	run:

Enter	full	year	(e.g.,	2001):	2011
Enter	month	as	number	between	1	and	12:	9

								September	2011
———————————————————————————
Sun	Mon	Tue	Wed	Thu	Fri	Sat
																1			2			3
4			5			6			7			8			9			10
11		12		13		14		15		16		17
18		19		20		21		22		23		24
25		26		27		28		29		30


28

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Design	Diagram	1


29

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Design	Diagram	2


30

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Design	Diagram	3


31

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Design	Diagram	4


32

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Design	Diagram	5


33

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Design	Diagram	6


34

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Implementation:	Top-Down
Top-down	approach	is	to	implement	one	function	in	the
structure	chart	at	a	time	from	the	top	to	the	bottom.

Stubs	can	be	used	for	the	functions	waiting	to	be
implemented.	A	stub	is	a	simple	but	incomplete	version	of	a
function.	The	use	of	stubs	enables	you	to	test	invoking	the
function	from	a	caller.	Implement	the	main	function	first	and
then	use	a	stub	for	the	printMonth	function.	For	example,	let
printMonth	display	the	year	and	the	month	in	the	stub.	Thus,
your	program	may	begin	like	this:

PrintCalendarSkeleton.py


35

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/PrintCalendarSkeleton.py
http://mattchoplin.com/python_city/session500.html#

Implementation:	Bottom-Up
Bottom-up	approach	is	to	implement	one	function	in	the
structure	chart	at	a	time	from	the	bottom	to	the	top.	For	each
function	implemented,	write	a	test	program	to	test	it.	Both
top-down	and	bottom-up	functions	are	fine.	Both	approaches
implement	the	functions	incrementally	and	help	to	isolate
programming	errors	and	makes	debugging	easy.	Sometimes,
they	can	be	used	together.


36

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Implementation:	Bottom-Up	cont.	(1)
The	isLeapYear(year)	function	can	be	implemented	using	the
following	code:

return	year	%	400	==	0	or	(year	%	4	==	0	and	year	%	100	!=	0)


37

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Implementation:	Bottom-Up	cont.	(2)
Use	the	following	facts	to	implement	getTotalNumberOfDaysInMonth(year,
month):

January,	March,	May,	July,	August,	October,	and	December	have	31	days
April,	June,	September,	and	November	have	30	days.
February	has	28	days	during	a	regular	year	and	29	days	during	a	leap	year.	A
regular	year,	therefore,	has	365	days,	and	a	leap	year	has	366	days.
To	implement	getTotalNumberOfDays(year,	month),	you	need	to	compute
the	total	number	of	days	(totalNumberOfDays)	between	January	1,	1800,
and	the	first	day	of	the	calendar	month.	You	could	find	the	total	number	of
days	between	the	year	1800	and	the	calendar	year	and	then	figure	out	the
total	number	of	days	prior	to	the	calendar	month	in	the	calendar	year.	The
sum	of	these	two	totals	is	totalNumberOfDays.
To	print	the	calendar’s	body,	first	pad	some	space	before	the	start	day	and
then	print	the	lines	for	every	week.

38

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

 Solution


39

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Benefit	of	stepwise	refinement
This	approach	makes	the	program	easier	to	write,	reuse,
debug,	test,	modify,	and	maintain.

Simpler	Program
Reusing	function
Easier	Developing,	Debugging	and	Testing
Better	facilitating	Teamwork


40

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Exercise:	credit	card	number	validation	(1)
Credit	card	numbers	follow	certain	patterns:	It	must	have
between	13	and	16	digits,	and	the	number	must	start	with:

4	for	Visa	cards
5	for	MasterCard	credit	cards
37	for	American	Express	cards
6	for	Discover	cards


41

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Exercise:	credit	card	number	validation	(2)
In	1954,	Hans	Luhn	of	IBM	proposed	an	algorithm	for
validating	credit	card	numbers.	The	algorithm	is	useful	to
determine	whether	a	card	number	is	entered	correctly.

Credit	card	numbers	are	generated	following	this	validity
check,	commonly	known	as	the	Luhn	check	or	the	Mod	10
check,	which	can	be	described	as	follows	(for	illustration,
consider	the	card	number	4388576018402626):


42

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Exercise:	credit	card	number	validation	(3)
1.	Double	every	second	digit	from	right	to	left.	If	doubling
of	a	digit	results	in	a	two ​digit	number,	add	up	the	two	digits
to	get	a	single ​digit	number


43

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Exercise:	credit	card	number	validation(4)
2.	Now	add	all	single ​digit	numbers	from	Step	1.	
4	+	4	+	8	+	2	+	3	+	1	+	7	+	8	=	37
3.	Add	all	digits	in	the	odd	places	from	right	to	left	in	the
card	number.
6	+	6	+	0	+	8	+	0	+	7	+	8	+	3	=	38
4.	Sum	the	results	from	Steps	2	and	3.	
37	+	38	=	75
5.	If	the	result	from	Step	4	is	divisible	by	10,	the	card
number	is	valid;	otherwise,	it	is	invalid.	For	example,	the
number	4388576018402626	is	invalid,	but	the	number
4388576018410707	is	valid.


44

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

Exercise:	credit	card	number	validation	(5)
Write	a	program	that	prompts	the	user	to	enter	a	credit	card
number	as	an	integer.	Display	whether	the	number	is	valid	or
invalid.	Design	your	program	to	use	the	following	functions:

#Return	true	if	the	card	number	is	valid
def	isValid(number):
#Get	the	result	from	Step2
def	sumOfDoubleEvenPlace(number):
#Return	this	number	if	it	is	a	single	digit,	otherwise,return
#the	sum	of	the	two	digits
def	getDigit(number):
#Return	sum	of	odd	place	digits	in	number
def	sumOfOddPlace(number):
#Return	true	if	the	digit	d	is	a	prefix	for	number
def	prefixMatched(number,d):
#Return	the	number	of	digits	in	d
def	getSize(d):
#Return	the	first	k	number	of	digits	from	number.If	the
#number	of	digits	in	number	is	less	than	k,	return	number.
def	getPrefix(number,k):


45

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

 Solution


46

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session500.html#

