
Introduction	to	programming
using	Python

Session	6-1
Matthieu	Choplin

matthieu.choplin@city.ac.uk

http://moodle.city.ac.uk/

1

http://mattchoplin.com/python_city/index.html
mailto:matthieu.choplin@city.ac.uk
http://moodle.city.ac.uk/
http://mattchoplin.com/python_city/session610.html#

Objectives
To	use	tuples	as	immutable	lists
To	use	sets	for	storing	and	fast	accessing	non-duplicated
elements
To	understand	the	performance	differences	between	sets
and	lists
To	store	key/value	pairs	in	a	dictionary	and	access	value
using	the	keys

2

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Tuples
Tuples	are	like	lists	except	they	are	immutable.	Once	they
are	created,	their	contents	cannot	be	changed.
If	the	contents	of	a	list	in	your	application	do	not	change,
you	should	use	a	tuple	to	prevent	data	from	being	modified
accidentally.	Furthermore,	tuples	are	more	efficient	than
lists.

3

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Creating	Tuples
With	brackets	`(`	and	`)`

By	converting	a	list	(comprehension	here)	into	a	tuple

By	converting	a	string	into	a	tuple

t1	=	()	#	Create	an	empty	tuple
t2	=	(1,	3,	5)

t3	=	tuple([2	*	x	for	x	in	range(1,	5)])

t4	=	tuple("abac")

4

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Tuples	--	len(),	max(),	min(),	[]	index
Tuples	can	be	used	like	lists	except	they	are	immutable

tuple2	=	tuple([7,	1,	2,	23,	4,	5])	#	Create	a	tuple	from	a	list
print(tuple2)

print("length	is",	len(tuple2))	#	Use	function	len
print("max	is",	max(tuple2))	#	Use	max
print("min	is",	min(tuple2))	#	Use	min
print("sum	is",	sum(tuple2))	#	Use	sum

print("The	first	element	is",	tuple2[0])	#	Use	indexer

5

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Tuples	--	+,	*,	[:]	slice,	in
tuple1	=	("green",	"red",	"blue")	#	Create	a	tuple
tuple2	=	tuple([7,	1,	2,	23,	4,	5])	#	Create	a	tuple	from	a	list
tuple3	=	tuple1	+	tuple2	#	Combine	2	tuples
print(tuple3)
tuple3	=	2	*	tuple1	#	Multiply	a	tuple
print(tuple3)
print(tuple2[2	:	4])	#	Slicing	operator
print(tuple1[-1])
print(2	in	tuple2)	#	in	operator
for	v	in	tuple1:
				print(v,	end	=	"	")
print()

6

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Tuples	--	+,	*,	[:]	slice,	in
tuple1	=	("green",	"red",	"blue")
tuple2	=	tuple([7,	1,	2,	23,	4,	5])
list1	=	list(tuple2)	#	Obtain	a	list	from	a	tuple
list1.sort()
tuple4	=	tuple(list1)
tuple5	=	tuple(list1)
print(tuple4)
print(tuple4	==	tuple5)	#	Compare	two	tuples

7

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Sets
Sets	are	like	lists	to	store	a	collection	of	items.	Unlike	lists,
the	elements	in	a	set	are:

unique
not	placed	in	any	particular	order

If	your	application	does	not	care	about	the	order	of	the
elements,	using	a	set	to	store	elements	is	more	efficient
than	using	lists.
The	syntax	for	sets	is	braces	{}.

8

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Creating	Sets
s1	=	set()	#	Create	an	empty	set
s2	=	{1,	3,	5}	#	Create	a	set	with	three	elements
s3	=	set((1,	3,	5))	#	Create	a	set	from	a	tuple
#	Create	a	set	from	a	list	(comprehension	here)
s4	=	set([x	*	2	for	x	in	range(1,	10)])
#	Create	a	set	from	a	string
s5	=	set("abac")	#	s5	is	{'a',	'b',	'c'}

9

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Manipulating	and	Accessing	Sets
s1	=	{1,	2,	4}
s1.add(6)
print(s1)	#		{1,	2,	4,	6}
s1.remove(4)
print(s1)	#		{1,	2,	6}

10

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Subset	and	Superset
s1	=	{1,	2,	4}
s2	=	{1,	4,	5,	2,	6}
s1.issubset(s2)	#	s1	is	a	subset	of	s2,	print	True
s2.issuperset(s1)	#	s2	is	a	superset	of	s1,	print	False

11

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Equality	Test
s1	=	{1,	2,	4}
s2	=	{1,	4,	2}
s1	==	s1	#		True
s2	!=	s1	#		False

12

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Set	Operations	(union,	|)
s1	=	{1,	2,	4}
s2	=	{1,	3,	5}
s1.union(s2)	#		{1,	2,	3,	4,	5}
s1	|	s2	#	equivalent	of	s1.union(s2)

13

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Set	Operations	(intersection,	&)
s1	=	{1,	2,	4}
s2	=	{1,	3,	5}
s1.intersection(s2)	#	{1}
s1	&	s2	#		equivalent	of	s1.intersection(s2)

14

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Set	Operations	(difference,	-)
s1	=	{1,	2,	4}
s2	=	{1,	3,	5}
s1.difference(s2)	#	{2,	4}
s1	-	s2	#		equivalent	of	s1.difference(s2)

15

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Set	Operations	(symetric_difference,	^)
s1	=	{1,	2,	4}
s2	=	{1,	3,	5}
s1.symmetric_difference(s2)	#	{2,	3,	4,	5}
s1	^	s2	#		equivalent	of	s1.symmetric_difference(s2)

16

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Examples
Usage	of	a	set	

Set	and	List	performance	compared:

using	the	time	library:	

SetDemo.py

SetListPerformanceTest.py

17

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/SetDemo.py
http://mattchoplin.com/python_city/exercises/SetListPerformanceTest.py
http://mattchoplin.com/python_city/session610.html#

Dictionary
Why	dictionary?
Suppose	your	program	stores	a	million	students	and
frequently	searches	for	a	student	using	the	social	security
number.	An	efficient	data	structure	for	this	task	is	the
dictionary.	A	dictionary	is	a	collection	that	stores	the
elements	along	with	the	keys.	The	keys	are	like	an	indexer.

18

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Key/value	pairs

19

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Creating	a	dictionary

Equivalent	to:

dictionary	=	{}	#	Create	an	empty	dictionary
dictionary	=	{"john":40,	"peter":45}

dictionary	=	dict()
dictionary	=dict(john=40,	peter=45)

20

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Adding/Modifying	Entries
To	add	an	entry	to	a	dictionary,	use	dictionary[key]	=	value

>>>	dictionary["susan"]	=	50
>>>	print(dictionary)
{'john':	40,	'susan':	50,	'peter':	45}

21

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Deleting	Entries
To	delete	an	entry	from	a	dictionary,	use	del	dictionary[key]

>>>	del	dictionary[“susan”]
>>>	print(dictionary)
{'john':	40,	'peter':	45}

22

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Looping	Entries
for	key	in	dictionary:
	print(key	+	":"	+	str(dictionary[key]))

23

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

The	len	and	in	operators
len(dictionary)	returns	the	number	of	the	elements	in	the
dictionary

>>>	dictionary	=	{"john":40,	"peter":45}
>>>	"john"	in	dictionary
True
>>>	"johnson"	in	dictionary
False
>>>	len(dictionary)
2

24

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

The	dictionary	methods
Methods Meaning

list(dictionary.keys()):
list

Returns	a	dict_keys	type	of	object,	that	you	can
convert	in	a	sequence	of	values	with
list(dictionary.keys())

list(dictionary.values()):
list

Returns	a	dict_values	type	of	object,	that	you	can
convert	with	list(dictionary.values())

list(dictionary.items()):
tuple

Returns	a	dict_items	type	of	object,	that	you	can
convert	in	a	sequence	of	tuples	(key,	value)	with
list(dictionary.items()).

clear():	None Deletes	all	entries.

get(key):	value Returns	the	value	for	the	key.

pop(key):	value Removes	the	entry	for	the	key	and	returns	its
value.

popitem():	tuple Returns	a	randomly-selected	key/value	pair	as	a

25

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

Exercise:	Guess	the	capital
Write	a	program	that	prompts	the	user	to	enter	a	capital
for	a	random	country.
Upon	receiving	the	user	input,	the	program	reports
whether	the	answer	is	correct.
The	countries	and	their	capitals	are	stored	in	a	dictionary	in

	(import	it	to	use).
The	user’s	answer	is	not	case	sensitive.
this	file

26

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/list_of_countries.py
http://mattchoplin.com/python_city/session610.html#

 Solution

27

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session610.html#

