
Introduction	to	programming
using	Python

Session	8
Matthieu	Choplin

matthieu.choplin@city.ac.uk

http://moodle.city.ac.uk/

1

http://mattchoplin.com/python_city/index.html
mailto:matthieu.choplin@city.ac.uk
http://moodle.city.ac.uk/
http://mattchoplin.com/python_city/session800.html#

Objectives
To	develop	a	subclass	from	a	superclass	through
inheritance
To	override	methods	in	the	subclass
To	understand	encapsulation	in	Python
To	explore	the	object	class	and	its	methods
To	understand	polymorphism	and	dynamic	binding
To	determine	if	an	object	is	an	instance	of	a	class	using	the
isinstance	function
To	discover	relationships	among	classes
To	design	classes	using	composition	and	inheritance
relationships

2

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Definition
Inheritance	enables	you	to	define	a	general	class	(a
superclass)	and	later	extend	it	to	more	specialized	classes
(subclasses).
Example:	a	class	Rectangle	and	a	class	Circle.	They	share
common	attributes	and	methods	such	as	the	attribute
color.
Common	attributes	and	methods	can	be	put	in	a	parent
class.
Using	inheritance	enables	to	avoid	redundancy

3

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

UML	representation	of	inheritance

4

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Superclasses	and	Subclasses
The	syntax	of	inheritance	is:

If	you	want	to	call	the	method	of	the	superclass,	use	super()
In	particular,	call	super().__init__()	to	get	the	superclass
attributes	accessible	from	the	subclass

class	Child(Parent):
			#	class	body

5

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

As	an	example,	see	the	following	programs:
GeometricObject.py
CircleDerivedFromGeometricObject.py
TestCircle.py

6

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/GeometricObject.py
http://mattchoplin.com/python_city/exercises/CircleDerivedFromGeometricObject.py
http://mattchoplin.com/python_city/exercises/TestCircle.py
http://mattchoplin.com/python_city/session800.html#

Try	to	fix	the	program

 Solution

class	A:
				def	__init__(self,	i	=	0):
								self.i	=	i

class	B(A):
				def	__init__(self,	j	=	0):
								self.j	=	j

def	main():
				b	=	B()
				print(b.i)
				print(b.j)
main()

7

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Exercise:	create	a	Rectangle	Class	inheriting
from	GeometricObject

We	already	have	the	
We	want	to	be	able	to	run	this	script:

Create	the	file	RectangleDerivedFromGeometricObject.py
in	which	you	will	create	the	class	Rectangle	inheriting	from
GeometricObject

 Solution

class	diagram

TestCircleRectangle.py

8

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#/inheritance-diagram
http://mattchoplin.com/python_city/exercises/TestCircleRectangle.py
http://mattchoplin.com/python_city/session800.html#

Overriding	Methods
A	subclass	inherits	methods	from	a	superclass.	Sometimes	it
is	necessary	for	the	subclass	to	modify	the	implementation	of
a	method	defined	in	the	superclass.	This	is	referred	to	as
method	overriding.

__str__	is	a	special	method	used	to	represent	the	object

class	Circle(GeometricObject):
				#	Override	the	__str__	method	defined	in	GeometricObject
				def	__str__(self):
								return	super().__str__()	+	"	radius:	"	+	\
												str(self.__radius)

9

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Exercise:	override	the	__str__	method
For	the	class	rectangle,	override	the	class	__str__	so	that	when
I	print	a	rectangle	object	it	says	"Rectangle	of	area	4	and
perimeter	8"

 Solution	using	"+"	concatenation

 Solution	using	format()

10

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Learn	more	about	string	formatting
Many	ways	to	format	strings	in	python,	see	this	website:
https://pyformat.info/

11

http://mattchoplin.com/python_city/index.html
https://pyformat.info/
http://mattchoplin.com/python_city/session800.html#

The	object	Class
Every	class	in	Python	is	descended	from	the	object	class.	If
no	inheritance	is	specified	when	a	class	is	defined,	the
superclass	of	the	class	is	object	by	default.

There	are	more	than	a	dozen	methods	defined	in	the	object
class.	We	discuss	four	methods	__new__(),	__init__(),	__str__(),
and	__eq__(other)	here.

12

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

The	__new__,	__init__	Methods
All	methods	defined	in	the	object	class	are	special	methods
with	two	leading	underscores	and	two	trailing	underscores.
The	__new__()	method	is	automatically	invoked	when	an
object	is	constructed.	This	method	then	invokes	the
__init__()	method	to	initialize	the	object.	Normally	you
should	only	override	the	__init__()	method	to	initialize	the
data	fields	defined	in	the	new	class.

13

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

The	__str__	Method
The	__str__()	method	returns	a	string	representation	for	the
object.	By	default,	it	returns	a	string	consisting	of	a	class
name	of	which	the	object	is	an	instance	and	the	object’s
memory	address	in	hexadecimal.

	def	__str__(self):
				return	"color:	"	+	self.__color	+	\
								"	and	filled:	"	+	str(self.__filled)	

14

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

The	__eq__	Method
The	__eq__(other)	method	returns	True	if	two	objects	are
the	same.	By	default,	x.__eq__(y)	(i.e.,	x	==	y)	returns	False,
but	x.__eq__(x)	is	True.	You	can	override	this	method	to
return	True	if	two	objects	have	the	same	contents.

15

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Override	__eq__
 	Remix

	

 main.py

class A: pass

a = A()
b = A()

print(a==b)

this time we override __eq__
class A:
 def __eq__(self, other):
 return type(self)==type(other):

a = A()
b = A()

print(a==b)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

16

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Polymorphism
The	inheritance	relationship	enables	a	subclass	to	inherit
features	from	its	superclass	with	additional	new	features.
A	subclass	is	a	specialization	of	its	superclass;	every
instance	of	a	subclass	is	also	an	instance	of	its	superclass,
but	not	vice	versa.	For	example,	every	circle	is	a	geometric
object,	but	not	every	geometric	object	is	a	circle.
Therefore,	you	can	always	pass	an	instance	of	a	subclass	to
a	parameter	of	its	superclass	type.
Examples:

	PolymorphismDemo.py RectangleFromGeometricObject.py
CircleFromGeometricObject.py

17

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/PolymorphismDemo.py
http://mattchoplin.com/python_city/exercises/RectangleFromGeometricObject.py
http://mattchoplin.com/python_city/exercises/CircleFromGeometricObject.py
http://mattchoplin.com/python_city/session800.html#

Exercise:	Polymorphism
Create	3	classes	in	a	polymorphic	way
Complete	the	following	script:

 Solution

Animals_incomplete.py

18

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/Animals_incomplete.py
http://mattchoplin.com/python_city/session800.html#

Dynamic	Binding
Dynamic	binding	works	as	follows:	Suppose	an	object	o	is	an	instance	of	classes
C1,	C2,	...,	Cn-1,	and	Cn,	where	C1	is	a	subclass	of	C2,	C2	is	a	subclass	of	C3,	...,
and	Cn-1	is	a	subclass	of	Cn.	That	is,	Cn	is	the	most	general	class,	and	C1	is	the
most	specific	class.	In	Python,	Cn	is	the	object	class.	If	o	invokes	a	method	p,
Python	searches	the	implementation	for	the	method	p	in	C1,	C2,	...,	Cn-1	and
Cn,	in	this	order,	until	it	is	found.	Once	an	implementation	is	found,	the	search
stops	and	the	first-found	implementation	is	invoked.

19

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Dynamic	Binding:	example
 	Remix

	

 main.py

class Student:
 def __str__(self):
 return "Student"
 def printStudent(self):
 print(self.__str__())

class GraduateStudent(Student):
 def __str__(self):
 return "Graduate Student"

a = Student()
b = GraduateStudent()
a.printStudent() # will print Student
b.printStudent() # will print Graduate Student

1
2
3
4
5
6
7
8
9

10
11
12
13
14

20

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

The	isinstance	Function
The	isinstance	function	can	be	used	to	determine	if	an
object	is	an	instance	of	a	class.
See	the	example	program	IsinstanceDemo.py

21

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/IsinstanceDemo.py
http://mattchoplin.com/python_city/session800.html#

isinstance()	compared	to	type()
isinstance	take	into	account	inheritance,	an	instance	of	a
derived	class	is	an	instance	of	a	base	class	too

 	Remix
	

 main.py

class Vehicle: pass

class Truck(Vehicle): pass

print(isinstance(Vehicle(), Vehicle)) # returns True
print(type(Vehicle()) == Vehicle) # returns True
print(isinstance(Truck(), Vehicle)) # returns True
print(type(Truck()) == Vehicle) # returns False

1
2
3
4
5
6
7
8

NB:	the	instance	are	created	on	the	fly	here,	we	do	not	pass
them	to	a	variable

22

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

The	hierarchy	of	the	type	of	Exceptions
You	can	find	the	full	hierarchy	on
https://docs.python.org/3/library/exceptions.html#exception-
hierarchy

23

http://mattchoplin.com/python_city/index.html
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
http://mattchoplin.com/python_city/session800.html#

Defining	Custom	Exception	Classes
See	how	we	inherit	from	RunTimeError	in	the	class
InvalidRadiusException	in	the	example

	and	how	we	use	it	inCircleWithCustomException.py
TestCircleWithCustomException.py

24

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/CircleWithCustomException.py
http://mattchoplin.com/python_city/exercises/TestCircleRectangle.py
http://mattchoplin.com/python_city/session800.html#

Encapsulation
The	syntax	we	have	seen	so	far	for	data	encapsulation	is	to
use	2	underscore	in	front	of	the	attribute	we	want	to	hide,
which	forces	us	to	use	getter	and	setter	to	access	and
modify	the	field.

class	C:
				def	__init__(self,x):
								self.__x	=	x

				def	getX(self):
								return	self.__x

				def	setX(self,	x):
								self.__x	=	x

25

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Encapsulation	and	data	mangling
The	use	of	double	leading	underscores	causes	the	name	to	be	mangled	to
something	else.	Specifically,	the	private	attributes	in	the	preceding	class	get
renamed	to	_C__x.	At	this	point,	you	might	ask	what	purpose	such	name	mangling
serves.	The	answer	is	inheritance	-	such	attributes	cannot	be	overridden	via
inheritance.	For	example:

class	C:
				def	__init__(self,x):
								self.__x	=	x

class	A(C):
				def	__init__(self):
								super().__init__(2)
								#	Does	not	override	C.__x
								self.__x	=	1

a	=	A()
print(a._A__x)
print(a._C__x)

26

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Encapsulation	in	a	more	pythonic	way
We	can	use	property	to	customize	access	to	an	attribute

class	C:
				def	__init__(self,x):
								self.setX(x)

				def	getX(self):
								return	self.__x

				def	setX(self,	x):
								if	x	<	0:
												self.__x	=	0
								elif	x	>	1000:
												self.__x	=	1000
								else:
												self.__x	=	x

				x	=	property(getX,	setX)

27

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Equivalent	using	decorators

Properties	should	only	be	used	in	cases	where	you	actually
need	to	perform	extra	processing	on	attribute	access

class	P:
				def	__init__(self,x):
								self.x	=	x

				@property
				def	x(self):
								return	self.__x

				@x.setter
				def	x(self,	x):
								if	x	<	0:
												self.__x	=	0
								elif	x	>	1000:
												self.__x	=	1000
								else:
												self.__x	=	x

28

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Relationships	among	Classes
Association
Aggregation
Composition
Inheritance

29

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Association
Association	represents	a	general	binary	relationship	that
describes	an	activity	between	two	classes.

The	association	relations	are	implemented	using	data	fields
and	methods	in	classes.

30

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Aggregation	and	Composition
Aggregation	is	a	special	form	of	association,	which
represents	an	ownership	relationship	between	two	classes.
Aggregation	models	the	has-a	relationship.	If	an	object	is
exclusively	owned	by	an	aggregated	object,	the
relationship	between	the	object	and	its	aggregated	object
is	referred	to	as	composition.

31

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Aggregation	Between	Same	Class	objects
Aggregation	may	exist	between	objects	of	the	same	class.
For	example,	a	person	may	have	a	supervisor.

class	Person:
				def	__init__(self,supervisor):
								self.supervisor	=	supervisor

32

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

is-a	relationship	vs	has-a	relationship
Inheritance	is	for	the	is-a	relationship
Composition	and	aggregation	is	for	the	has-a	relationship

33

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Multiple	inheritance
Syntax	for	multiple	inheritance:

Note:	as	soon	as	we	explicitly	inherits	from	a	class,	we	are
in	the	case	of	multiple	inheritance	because	in	python	all
classes	inherits	from	object	by	default

class	Child(ParentA,	ParentB):
				#	rest	of	the	class

34

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Exercises	on	Inheritance	and	OOP
The	Account	class
Game:	ATM	Machine

35

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Exercise:	The	Account	class	(1)
Design	a	class	named	Account	that	contains:

A	private	int	data	field	named	id	for	the	account.
A	private	float	data	field	named	balance	for	the	account.
A	private	float	data	field	named	annualInterestRate	that	stores	the	current
interest	rate.
A	constructor	that	creates	an	account	with	the	specified	id	(default	0),	initial
balance	(default	100),	and	annual	interest	rate	(default	0).
The	accessor	and	mutator	methods	for	id,	balance,	and	annualInterestRate.
A	method	named	getMonthlyInterestRate()	that	returns	the	monthly
interest	rate.
A	method	named	getMonthlyInterest()	that	returns	the	monthly	interest.
A	method	named	withdraw	that	withdraws	a	specified	amount	from	the
account.
A	method	named	deposit	that	deposits	a	specified	amount	to	the	account.

NB:	for	making	fields	private,	use	 ,	remember	that	you	can	also	usethis
properties

36

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session700.html#/18
http://mattchoplin.com/python_city/session800.html#/23
http://mattchoplin.com/python_city/session800.html#

Exercise:	The	Account	class	(2)
Draw	the	UML	diagram	for	the	class,	and	then	implement	the	class.	(Hint:
The	method	getMonthlyInterest()	is	to	return	the	monthly	interest	amount,
not	the	interest	rate.	Use	this	formula	to	calculate	the	monthly	interest:
balance	*	monthlyInterestRate.

monthlyInterestRate	is	annualInterestRate	/	12.	Note	that
annualInterestRate	is	a	percent	(like	4.5%).	You	need	to	divide	it	by	100.)

Write	a	test	program	that	creates	an	Account	object	with	an	account	id	of
1122,	a	balance	of	£20,000,	and	an	annual	interest	rate	of	4.5%.	Use	the
withdraw	method	to	withdraw	£2,500,	use	the	deposit	method	to	deposit
£3,000,	and	print	the	id,	balance,	monthly	interest	rate,	and	monthly
interest.

37

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Exercise	on	Inheritance	and	OOP
Use	the	Account	class	created	in	the	previous	exercise	to
simulate	an	ATM	machine.	Create	ten	accounts	in	a	list	with
the	ids	0,	1,	...,	9,	and	an	initial	balance	of	£100.	The	system
prompts	the	user	to	enter	an	id.	If	the	id	is	entered
incorrectly,	ask	the	user	to	enter	a	correct	id.	Once	an	id	is
accepted,	the	main	menu	is	displayed	as	shown	in	the	sample
run.	You	can	enter	a	choice	of	1	for	viewing	the	current
balance,	2	for	withdrawing	money,	3	for	depositing	money,
and	4	for	exiting	the	main	menu.	Once	you	exit,	the	system
will	prompt	for	an	id	again.	So,	once	the	system	starts,	it	won't
stop.

38

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

Solution	OOP
 Show	solution

You	can	write	a	better	program	�

39

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

