2% CITY UNIVERSITY

iy

Al /. LONDON

Introduction to programming
using Python

Session 3
Matthieu Choplin
matthieu.choplin@city.ac.uk
http://moodle.city.ac.uk/

http://mattchoplin.com/python_city/index.html
mailto:matthieu.choplin@city.ac.uk
http://moodle.city.ac.uk/
http://mattchoplin.com/python_city/session800.html#

i
1.

2% CITY UNIVERSITY
A/ LONDON

Objectives

e Todevelop asubclass from a superclass through
iInheritance

e To override methods in the subclass

e Tounderstand encapsulation in Python

e To explore the object class and its methods

e Tounderstand polymorphism and dynamic binding

e To determine if an object is an instance of a class using the
Isinstance function

e Todiscover relationships among classes

e To design classes using composition and inheritance
relationships

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
1.

2% CITY UNIVERSITY
A/ LONDON

Definition

e |[nheritance enables you to define a general class (a
superclass) and later extend it to more specialized classes
(subclasses).

e Example: aclass Rectangle and a class Circle. They share
common attributes and methods such as the attribute
color.

e Common attributes and methods can be put in a parent
class.

e Using inheritance enables to avoid redundancy

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

CITY UNIVERSITY
", LONDON

GeometricObject

-color: str
-filled: bool

filled: bool)
getColor(): str

__str_ (): str

GeometricObject(color: str,

setColor(color: str): None
isFilled(filled: bool): None

UML representation of inheritance

The color of the object (default: white).
Indicates whether the object is filled with a color.

Creates a GeometricObject with the specified

color and filled values.
Returns the color.

Sets a new color.

Returns the filled property.

Returns a string representation of this object.

I

3
Circle T

Rectangle

-radius: float

Circle(radius: float, color: str,
filled: bool)

getRadius(): float
setRadius(radius: float):
None

getArea(): float
getDiameter(): float
printCircle(): None

-width: double
-height: double

Rectangle(width: float, height:
float color: string, filled: bool)
getWidth(): float
setWidth(width: float): None
getHeight(): float
setHeight(height: float): None
getArea(): float
getPerimeter(): float

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

&2, CITY UNIVERSITY
<\ /i LONDON

Superclasses and Subclasses

e The syntax of inheritance is:

class Child(Parent):

e If youwant to call the method of the superclass, use supery()
e In particular, call super().__init_ () to get the superclass
attributes accessible from the subclass

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

X

% CITY UNIVERSITY

g

i

"\l /. LONDON

As an example, see the following programs:

e GeometricObject.py
e CircleDerivedFromGeometricObject.py
e TestCircle.py

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/GeometricObject.py
http://mattchoplin.com/python_city/exercises/CircleDerivedFromGeometricObject.py
http://mattchoplin.com/python_city/exercises/TestCircle.py
http://mattchoplin.com/python_city/session800.html#

&2, CITY UNIVERSITY
<\ /i LONDON

Try to fix the program

class A:
def _init (self,i=0):
self.i =i

class B(A):
def __init (self, j= 0):
self.j = j

def main():
b = B()

print(b.i)
print(b.j)
main()

@ Solution

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
I."

2% CITY UNIVERSITY
A/ LONDON

Exercise: create a Rectangle Class inheriting
from GeometricObject

e We already have the class diagram

e \We want to be able to run this script:
TestCircleRectangle.py

e Create thefile RectangleDerivedFromGeometricObject.py
in which you will create the class Rectangle inheriting from
GeometricObject

@ Solution

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#/inheritance-diagram
http://mattchoplin.com/python_city/exercises/TestCircleRectangle.py
http://mattchoplin.com/python_city/session800.html#

55 CITY UNIVERSITY

/" LONDON

Overriding Methods

A subclass inherits methods from a superclass. Sometimes it
IS necessary for the subclass to modify the implementation of
a method defined in the superclass. This is referred to as
method overriding.

str__is aspecial method used to represent the object

class Circle(GeometricObject):

return super().__str__ () + "radius: " +\
str(self. __radius)

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
I."

2% CITY UNIVERSITY
A/ LONDON

Exercise: override the __str__ method

For the class rectangle, override the class _str__ so that when
| print a rectangle object it says "Rectangle of area 4 and
perimeter 8"

@ Solution using "+" concatenation

@ Solution using formati()

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i

g

2% CITY UNIVERSITY

Al /. LONDON

Learn more about string formatting

Many ways to format strings in python, see this website:
https://pyformat.info/

http://mattchoplin.com/python_city/index.html
https://pyformat.info/
http://mattchoplin.com/python_city/session800.html#

i
1.

2% CITY UNIVERSITY
A/ LONDON

The object Class

e Every classin Python is descended from the object class. If
no inheritance is specified when a class is defined, the
superclass of the class is object by default.

class Name: class Name (object):
<is equivalent to >

e There are more than a dozen methods defined in the object
class. We discuss four methods new_ (), init (), str (),
and __eq__(other) here.

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
1.

2% CITY UNIVERSITY
A/ LONDON

The __new__, __init__ Methods

e All methods defined in the object class are special methods
with two leading underscores and two trailing underscores.

e The new_ () method is automatically invoked when an
object is constructed. This method then invokes the
__init__() method to initialize the object. Normally you
should only override the _init_ () method to initialize the
data fields defined in the new class.

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

&2, CITY UNIVERSITY
2\ /. LONDON

The __str__ Method

e The str_() method returns a string representation for the
object. By default, it returns a string consisting of a class
name of which the object is an instance and the object’s
memory address in hexadecimal.

def _str (self):

return "color: " + self. color +\
"and filled: " + str(self.__filled)

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
I."

2% CITY UNIVERSITY
A/ LONDON

The __eq__ Method

e The eq_ (other) method returns True if two objects are
the same. By default, x._eq_ (y) (i.e.,, x ==y) returns False,
but x. _eq_ (x)is True. You can override this method to
return True if two objects have the same contents.

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

<>

) > - ? y

main.py

class A: pass

a
b

AQ)
AQ)

print(a==b)

this time we override __eq__
class A:
def __eq__ (self, other):
return type(self)==type(other):

a = A()
b = A()
print(a==b)

Override __eq__

+ @

Remix

»)

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
I."

2% CITY UNIVERSITY
A/ LONDON

Polymorphism

e Theinheritance relationship enables a subclass to inherit
features from its superclass with additional new features.

e Asubclassis aspecialization of its superclass; every
Instance of a subclass is also an instance of its superclass,
but not vice versa. For example, every circle is a geometric
object, but not every geometric object is a circle.
Therefore, you can always pass an instance of a subclass to

a parameter of its superclass type.

e Examples:
s PolymorphismDemo.py RectangleFromGeometricObject.py

CircleFromGeometricObject.py

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/PolymorphismDemo.py
http://mattchoplin.com/python_city/exercises/RectangleFromGeometricObject.py
http://mattchoplin.com/python_city/exercises/CircleFromGeometricObject.py
http://mattchoplin.com/python_city/session800.html#

i

g

2% CITY UNIVERSITY

Al /. LONDON

Exercise: Polymorphism

e Create 3 classes in a polymorphic way

e Complete the following script:
m Animals_incomplete.py

@ Solution

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/Animals_incomplete.py
http://mattchoplin.com/python_city/session800.html#

i

5 CITY UNIVERSITY
A/ LONDON

Dynamic Binding

Dynamic binding works as follows: Suppose an object o is an instance of classes
C1,C2,..,Cn-1,and Cn,where Clis a subclass of C2,C2 is a subclass of C3, ...,
and Cn-1is a subclass of Cn. That is, Cn is the most general class, and C1 is the
most specific class. In Python, Cn is the object class. If o invokes a method p,
Python searches the implementation for the method pinC1, C2, ..., Cn-1 and
Cn, in this order, until it is found. Once an implementation is found, the search
stops and the first-found implementation is invoked.

Cn |—Cn1 |— —1c2 |—ct
/ . Since o is an instance of C1, o is
object also an instance of C2, C3, ..., Cn-

1, and Cn

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

CITY UNIVERSITY
", LONDON

<>

1=
2
3
4 -
5
6
7 -
8 -
9
10
11
12
13
14

Dynamic Binding: example

) > - ? y

main.py

class Student:
def _ str__ (self):
return "Student"
def printStudent(self):
print(self.__str__())

class GraduateStudent(Student):
def __str__ (self):
return "Graduate Student"

Student()
= GraduateStudent()
.printStudent() # will print Student

oo o

.printStudent() # will print Graduate Student

+ [

Remix

»)

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i

g

2% CITY UNIVERSITY

Al /. LONDON

The isinstance Function

e Theisinstance function can be used to determine if an
object is an instance of a class.
e See the example program IsinstanceDemo.py

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/IsinstanceDemo.py
http://mattchoplin.com/python_city/session800.html#

i

2% CITY UNIVERSITY
A\ /. LONDON

isinstance() compared to type()

e |sinstance take into account inheritance, an instance of a
derived class is an instance of a base class too

= (P > v 2 9 « B Remix = =)
< > mainpy + [

1 class Vehicle: pass

2

3 class Truck(Vehicle): pass

4

5 print(isinstance(Vehicle(), Vehicle)) # returns True

6 print(type(Vehicle()) == Vehicle) # returns True

7 print(isinstance(Truck(), Vehicle)) # returns True

8 print(type(Truck()) == Vehicle) # returns False

e NB: theinstance are created on the fly here, we do not pass
them to a variable

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

4=, CITY UNIVERSITY
Al /5. LONDON

The hierarchy of the type of Exceptions

You can find the full hierarchy on
https://docs.python.org/3/library/exceptions.html#exception-

hierarchy
BaseException
Exception
ArthmeticError OSError RuntimeError LookupError SyntaxError
ZeroDivivisionError IndentationError

IndexError KeyError

FileNotFoundError TimeoutError

http://mattchoplin.com/python_city/index.html
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
http://mattchoplin.com/python_city/session800.html#

i

2% CITY UNIVERSITY
A/ LONDON

Defining Custom Exception Classes

See how we inherit from RunTimeError in the class
InvalidRadiusException in the example
CircleWithCustomException.py and how we use it in
TestCircleWithCustomException.py

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/exercises/CircleWithCustomException.py
http://mattchoplin.com/python_city/exercises/TestCircleRectangle.py
http://mattchoplin.com/python_city/session800.html#

&2, CITY UNIVERSITY
2\l [LONDON

Encapsulation

e The syntax we have seen so far for data encapsulationis to
use 2 underscore in front of the attribute we want to hide,
which forces us to use getter and setter to access and
modify the field.

class C:
def _init_ (self,x):
self. X=X

def getX(self):
return self. X

def setX(self, x):
self. X=X

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

e

CITY UNIVERSITY
LONDON

Encapsulation and data mangling

e The use of double leading underscores causes the name to be mangled to
something else. Specifically, the private attributes in the preceding class get

renamed to _C__ x. At this point, you might ask what purpose such name mangling

serves. The answer is inheritance - such attributes cannot be overridden via
inheritance. For example:

class C:
def __init_ (self,x):
self. x=x

class A(C):
def __init_ (self):
super().__init__ (2)

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

CITY UNIVERSITY
. LONDON

Encapsulation in a more pythonic way

e \We can use property to customize access to an attribute

class C:

dewlf,x):

def getX(self):
return self. X
def setX(self, x):
if x < O:
self. x=0
elif x > 1000:
self. x=1000
else:
self. x=x

X = property(getX, setX)

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

e

CITY UNIVERSITY
LONDON

Equivalent using decorators

class P:

dew(self,x):

@property
det x(self):
return self. X

et x(selt, x):
if X < O:
self. x=0
elif x > 1000:
self. x=1000
else:
self. X=X

Properties should only be used in cases where you actually
need to perform extra processing on attribute access

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

&
X

% CITY UNIVERSITY
/. LONDON

Relationships among Classes

e Association
o Aggregation
e Composition
¢ |nheritance

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
XigR

%> CITY UNIVERSITY
A/ LONDON

Association

e Association represents a general binary relationship that
describes an activity between two classes.

560 Take x 0.3 Teach =~ |

Student Course Faculty
Teacher

class Student: class Course: class Faculty:
def addCourse(self, def addStudent (self, def addCourse(self,
courses) : student) : course) :
add course # add student # add course

to a list # to a list # to a list
def setFaculty(self,
faculty) :

e The association relations are implemented using data fields
and methods in classes.

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
I.' 2

%> CITY UNIVERSITY
A/ LONDON

Aggregation and Composition

e Aggregation is a special form of association, which

represents an ownership relationship between two classes.
Aggregation models the has-a relationship. If an object is

exclusively owned by an aggregated object, the

relationship between the object and its aggregated object
Is referred to as composition.

Name

1

Composition
1\

class Name:

class Student:
def init (self,name, addresses):

self.name = name

+ Student

Aggregation
/1

1.3

self.addresses = addresses

Address

class Addresses:

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

S CITY UNIVERSITY

/" LONDON

Aggregation Between Same Class objects

e Aggregation may exist between objects of the same class.

For example, a person may have a supervisor.
1

Person

Supervisor

class Person:

def _init__ (self,supervisor):
self.supervisor = supervisor

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
I."

2% CITY UNIVERSITY
A/ LONDON

is-a relationship vs has-a relationship

e |nheritance is for the is-arelationship
e Composition and aggregation is for the has-a relationship

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

%, CITY UNIVERSITY
", LONDON

Multiple inheritance

e Syntax for multiple inheritance:

class Child(ParentA, ParentB):

¢ Note: as soon as we explicitly inherits from a class, we are
in the case of multiple inheritance because in python all
classes inherits from object by default

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

&
X

% CITY UNIVERSITY
/. LONDON

Exercises on Inheritance and OOP

e The Account class
e Game: ATM Machine

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
1.

2% CITY UNIVERSITY
A/ LONDON

Exercise: The Account class (1)

Design a class named Account that contains:

e A private int data field named id for the account.

e A private float data field named balance for the account.

e A private float data field named annuallnterestRate that stores the current
interest rate.

e A constructor that creates an account with the specified id (default O), initial
balance (default 100), and annual interest rate (default O).

e The accessor and mutator methods for id, balance, and annuallnterestRate.

e A method named getMonthlylnterestRate() that returns the monthly
interest rate.

e A method named getMonthlyInterest() that returns the monthly interest.

e A method named withdraw that withdraws a specified amount from the
account.

e A method named deposit that deposits a specified amount to the account.

NB: for making fields private, use this, remember that you can also use
properties

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session700.html#/18
http://mattchoplin.com/python_city/session800.html#/23
http://mattchoplin.com/python_city/session800.html#

i
I_..

2% CITY UNIVERSITY
A/ LONDON

EFxercise: The Account class (2)

Draw the UML diagram for the class, and then implement the class. (Hint:
The method getMonthlylnterest() is to return the monthly interest amount,
not the interest rate. Use this formula to calculate the monthly interest:
balance * monthlylnterestRate.

monthlylnterestRate is annuallnterestRate / 12. Note that
annuallnterestRate is a percent (like 4.5%). You need to divide it by 100.)

Write a test program that creates an Account object with an account id of
1122, a balance of £20,000, and an annual interest rate of 4.5%. Use the
withdraw method to withdraw £2,500, use the deposit method to deposit
£3,000, and print the id, balance, monthly interest rate, and monthly

interest.

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i
1.

2% CITY UNIVERSITY
A/ LONDON

Exercise on Inheritance and OOP

Use the Account class created in the previous exercise to
simulate an ATM machine. Create ten accounts in a list with
theids O, 1, ..., 9, and an initial balance of £100. The system
prompts the user to enter an id. If the id is entered
incorrectly, ask the user to enter a correctid. Once anid is
accepted, the main menu is displayed as shown in the sample
run. You can enter a choice of 1 for viewing the current
balance, 2 for withdrawing money, 3 for depositing money,
and 4 for exiting the main menu. Once you exit, the system

wil
sto

prompt for an id again. So, once the system starts, it won't
o)

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

i

2% CITY UNIVERSITY

j@l LONDON

Solution OOP

@ Show solution

You can write a better program

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session800.html#

