
Introduction	to	programming
using	Python

Session	9
Matthieu	Choplin

matthieu.choplin@city.ac.uk

http://moodle.city.ac.uk/


1

http://mattchoplin.com/python_city/index.html
mailto:matthieu.choplin@city.ac.uk
http://moodle.city.ac.uk/
http://mattchoplin.com/python_city/session900.html#


Objectives
Quick	review	of	what	HTML	is
The	find()	string	method
Regular	expressions
Installing	external	libraries
Using	a	web	parser:	BeautifulSoup
Submitting	data	to	a	form	using	MechanicalSoup
Fetching	data	in	real	time


2

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


The	HTML	language
The	primary	language	of	information	on	the	internet	is	the
HTML
Every	webpages	are	written	in	HTML
To	see	the	source	code	of	the	webpage	you	are	currently
seeing,	do	either	right	click	and	select	"View	page	Source".
Or	from	the	top	menu	of	your	browser,	click	on	View	and
"View	Source".


3

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Example
Profile_Aphrodite.htm

<html><head><meta	http-equiv="Content-Type"
content="text/html;	charset=windows-1252">
<title>Profile:	Aphrodite</title>
<link	rel="stylesheet"	type="text/css"></head>
<body	bgcolor="yellow">
<center>
<br><br>
<img	src="./Profile_	Aphrodite_files/aphrodite.gif">
<h2>Name:	Aphrodite</h2>
<br><br>
Favorite	animal:	Dove
<br><br>
Favorite	color:	Red
<br><br>
Hometown:	Mount	Olympus
</center>
</body></html>

4

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/practice/Profile_Aphrodite.htm
http://mattchoplin.com/python_city/session900.html#


Grab	all	html	from	a	web	page

What	is	the	type	of	object	that	is	returned?

from	urllib.request	import	urlopen
my_address	=	"http://mattchoplin.com/python_city/practice/Profile_Aphrodite.htm"
html_page	=	urlopen(my_address)
html_text	=	html_page.read().decode('utf-8')
print(html_text)


5

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Parsing	a	web	page	with	a	String's	method
You	can	use	the	find()	method
Example:

  	Remix
	

 

  main.py  

this_is_my_string = 'Programming in python'
string_to_find = input('Enter a string to find in \'%s\': ' % this_is_my_string)
index_found = this_is_my_string.find(string_to_find)
print(index_found)
print(this_is_my_string[index_found])

1
2
3
4
5


6

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Find	a	word	between	2	other	words
  	Remix

	
 

  main.py  

my_string = 'some text with a special word ' \
            '<strong>Equanimity</strong>'
start_tag = "<strong>"
end_tag = "</strong>"
start_index = my_string.find(start_tag) + len(start_tag)
end_index = my_string.find(end_tag)
# We extract the text between 
# the last index of the first tag '>'
# and the first index of the second tag '<'
print(my_string[start_index:end_index])

1
2
3
4
5
6
7
8
9

10
11


7

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Parsing	the	title	with	the	find()	method
from	urllib.request	import	urlopen
my_address	=	"http://mattchoplin.com/python_city/"	\
													"practice/Profile_Aphrodite.htm"
html_page	=	urlopen(my_address)
html_text	=	html_page.read().decode('utf-8')
start_tag	=	"<title>"
end_tag	=	"</title>"
start_index	=	html_text.find(start_tag)	+	len(start_tag)
end_index	=	html_text.find(end_tag)
print(html_text[start_index:end_index])


8

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Limitation	of	the	find()	method
Try	to	use	the	same	script	for	extracting	the	title	of
Profile_Poseidon.htm

from	urllib.request	import	urlopen
my_address	=	"http://mattchoplin.com/python_city/"	\
													"practice/Profile_Poseidon.htm"
html_page	=	urlopen(my_address)
html_text	=	html_page.read().decode('utf-8')
start_tag	=	"<title>"
end_tag	=	"</title>"
start_index	=	html_text.find(start_tag)	+	len(start_tag)
end_index	=	html_text.find(end_tag)
print(html_text[start_index:end_index])


9

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/practice/Profile_Poseidon.htm
http://mattchoplin.com/python_city/session900.html#


Limitation	of	the	find()	method
Do	you	see	the	difference?	We	are	not	getting	what	we
want	now:

This	is	because	of	the	extra	space	before	the	closing	">"	in
<title	>
The	html	is	still	rendered	by	the	browser,	but	we	cannot
rely	on	it	completely	if	we	want	to	parse	a	web	page

<head><meta	http-equiv="Content-Type"	content="text/html;	charset=windows-1252">
<title	>Profile:	Poseidon


10

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Regular	expressions
They	are	used	to	determine	whether	or	not	a	text	matches
a	particular	pattern
We	can	use	them	thanks	to	the	re	module	in	python
They	use	special	characters	to	represent	patterns:	^,	$,	*,	+,
.,	etc...


11

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


re.findall()	using	*
The	asterisk	character	*	stands	for	"zero	or	more"	of
whatever	came	just	before	the	asterisk
re.findall():

finds	any	text	within	a	string	that	matches	a	given
pattern	i.e.	regex
takes	2	arguments,	the	1st	is	the	regex,	the	2nd	is	the
string	to	test
returns	a	list	of	all	matches

#	re.findall(<regular_expression>,	<string_to_test>)


12

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Interactive	example
  	Remix

	
 

  main.py  

import re

print(re.findall("ab*c", "ac"))
print(re.findall("ab*c", "abcd"))
print(re.findall("ab*c", "acc"))
print(re.findall("ab*c", "abcac"))  # 2 found
print(re.findall("ab*c", "abdc"))  # nothing found

1
2
3
4
5
6
7


13

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


re.findall()	case	insensitive
Note	that	re.findall()	is	case	sensitive

We	can	use	a	3rd	argument	re.IGNORECASE	to	ignore	the
case

re.findall('ab*c',	'ABC')	#	nothing	found

re.findall('ab*c',	'ABC',	re.IGNORECASE)	#	ABC	found


14

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


re.findall()	using	.	(period)
the	period	.	stands	for	any	single	character	in	a	regular
expression
for	instance	we	could	find	all	the	strings	that	contains	the
letters	"a"	and	"c"	separated	by	a	single	character	as
follows:

  	Remix
	

 

  main.py  

import re
print(re.findall('a.c', 'abc'))
print(re.findall('a.c', 'abbc'))
print(re.findall('a.c', 'ac'))
print(re.findall('a.c', 'acC', re.IGNORECASE))

1
2
3
4
5
6


15

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


re.findall()	using	.*	(period	asterisk)
the	term	.*	stands	for	any	character	being	repeated	any
number	of	times
for	instance	we	could	find	all	the	string	that	starts	with	"a"
and	ends	with	"c",	regardless	of	what	is	in	between	with:

  	Remix
	

 

  main.py  

import re
print(re.findall('a.*c', 'abc'))
print(re.findall('a.*c', 'abbc'))
print(re.findall('a.*c', 'ac'))
print(re.findall('a.*c', 'acc'))

1
2
3
4
5


16

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


re.search()
re.search():

searches	for	a	particular	pattern	inside	a	string
returns	a	MatchObject	that	stores	different	"groups"	of
data
when	we	call	the	group()	method	on	a	MatchObject,	we
get	the	first	and	most	inclusive	result

import	re
match_results	=	re.search('ab*c',	'ABC',	re.IGNORECASE)
print(match_results.group())		#	returns	ABC


17

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


re.sub()
re.sub()

allows	to	replace	a	text	in	a	string	that	matches	a	pattern
with	a	substitute	(like	the	replace()	string	method)
takes	3	arguments:
1.	 regex
2.	 replacement	text
3.	 string	to	parse

my_string	=	"This	is	very	boring"
print(my_string.replace('boring',	'funny'))
import	re
print(re.sub('boring',	'WHAT?',	my_string))


18

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


greedy	regex	(*)
greedy	expressions	try	to	find	the	longest	possible	match
when	character	like	*	are	used
for	instance,	in	this	example	the	regex	finds	everything
between	'<'	and	'>'	which	is	actually	the	whole	'<replaced>	if
it	is	in	<tags>'

my_string	=	'Everything	is	<replaced>	if	it	is	in	<tags>'
my_string	=	re.sub('<.*>',	'BAR',	my_string)
print(my_string)		#	'Everything	is	BAR'


19

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


non-greedy	regex	(*?)
*?

works	the	same	as	*	BUT	matches	the	shortest	possible
string	of	text

my_string	=	'Everything	is	<replaced>	if	it	is	in	<tags>'
my_string	=	re.sub('<.*?>',	'BAR',	my_string)
print(my_string)		#	'Everything	is	BAR	if	it	is	in	BAR'


20

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Use	case:	Using	regex	to	parse	a	webpage
We	want	to	extract	the	title:

We	will	use	the	regular	expression	for	this	case

Profile_Dionysus.htm

<TITLE	>Profile:	Dionysus</title		/	>


21

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/practice/Profile_Dionysus.htm
http://mattchoplin.com/python_city/session900.html#


Use	case:	solution
import	re
from	urllib.request	import	urlopen
my_address	=	"http://mattchoplin.com/python_city/practice/Profile_Dionysus.htm"
html_page	=	urlopen(my_address)
html_text	=	html_page.read().decode('utf-8')
match_results	=	re.search("<title	.*?>.*</title	.*?>",	html_text,	re.IGNORECASE)
title	=	match_results.group()
title	=	re.sub("<.*?>",	"",	title)
print(title)


22

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Use	case:	explanation
<title	.*?>	finds	the	opening	tag	where	there	must	be	a
space	after	the	word	"title"	and	the	tag	must	be	closed,	but
any	characters	can	appear	in	the	rest	of	the	tag.	We	use	the
non-greedy	*?,	because	we	want	the	first	closing	">"	to
match	the	tag's	end
.*	any	character	can	appear	in	between	the	<title>	tag
<\title	.*?>	same	expression	as	the	first	part	but	with	the
forward	slash	to	represent	a	closing	HTML	tag
More	on	regex:
https://docs.python.org/3.5/howto/regex.html


23

http://mattchoplin.com/python_city/index.html
https://docs.python.org/3.5/howto/regex.html
http://mattchoplin.com/python_city/session900.html#


Installing	an	external	library
Sometimes	what	you	need	is	not	included	in	the	python
standard	library	and	you	have	to	install	an	external	library
You	are	going	to	use	a	python	package	manager:	
The	packages	(libraries)	that	you	can	install	with	pip	are
listed	on	
If	you	do	not	have	pip,	you	can	use	the	command	"python
setup.py	install"	from	the	package	you	would	have
downloaded	and	uncompressed	from	

pip

https://pypi.python.org/pypi

pypi


24

http://mattchoplin.com/python_city/index.html
https://pip.pypa.io/en/latest/installing/
https://pypi.python.org/pypi
https://pypi.python.org/pypi
http://mattchoplin.com/python_city/session900.html#


Installing	with	Pycharm	(1)


25

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Installing	with	Pycharm	(2)


26

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Installing	with	Pycharm	(3)


27

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Using	Beautiful	Soup
from	bs4	import	BeautifulSoup
from	urllib.request	import	urlopen
my_address	=	"http://mattchoplin.com/python_city/"	\
													"practice/Profile_Dionysus.htm"
html_page	=	urlopen(my_address)
html_text	=	html_page.read().decode('utf-8')
my_soup	=	BeautifulSoup(html_text,	"html.parser")


28

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


BeautifulSoup:	get_text()
get_text()

is	extracting	only	the	text	from	an	html	document

there	are	lot	of	blank	lines	left	but	we	can	remove	them
with	the	method	replace()

Using	BeautifulSoup	to	extract	the	text	first	and	use	the
find()	method	is	sometimes	easier	than	to	use	regular
expressions

print(my_soup.get_text())

print(my_soup.get_text().replace("\n\n\n",""))


29

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


BeautifulSoup:	find_all()
find_all()

returns	a	list	of	all	elements	of	a	particular	tag	given	in
argument

What	if	the	HTML	page	is	broken?

print(my_soup.find_all("img"))


30

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


BeautifulSoup:	Tags

This	is	not	what	we	were	looking	for.	The	<img>	is	not
properly	closed	therefore	BeautifulSoup	ends	up	adding	a
fair	amount	of	HTML	after	the	image	tag	before	inserting	a
</img>	tag	on	its	own.	This	can	happen	with	real	case.
NB:	BeautifulSoup	is	storing	HTML	tags	as	Tag	objects	and
we	can	extract	information	from	each	Tag.

[<img	src="dionysus.jpg"/>,	<img	src="grapes.png"><br><br>
Hometown:	Mount	Olympus
<br><br>
Favorite	animal:	Leopard	<br>
<br>
Favorite	Color:	Wine
</br></br></br></br></br></br></img>]


31

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


BeautifulSoup:	Extracting	information	from
Tags

Tags:
have	a	name
have	attributes,	accessible	using	keys,	like	when	we
access	values	of	a	dictionary	through	its	keys

for	tag	in	my_soup.find_all("img"):
				print(tag.name)
				print(tag['src'])


32

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


BeautifulSoup:	accessing	a	Tag	through	its
name

The	HTML	is	cleaned	up
We	can	use	the	string	attributes	stored	by	the	title

print(my_soup.title)

print(my_soup.title.string)


33

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


The	select	method	(1)
...	will	return	a	list	of	Tag	objects,	which	is	how	Beautiful
Soup	represents	an	HTML	element.	The	list	will	contain
one	Tag	object	for	every	match	in	the	BeautifulSoup
object's	HTML


34

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


The	select	method	(2)
Selector	passed	to	the	select
method

Will	match...

soup.select('div') All	elements	named	<div>

soup.select('#author') The	element	with	an	id	attribute	of	author

soup.select('.notice') All	elements	that	use	a	CSS

soup.select('div	span') All	elements	named	<span>	that	are	within	an
element	named	<div>

soup.select('div	>	span') All	elements	named	<span>	that	are	directly	within
an	element	named	<div>,	with	no	other	elements	in
between

soup.select('input[name]') All	elements	named	<input>	that	have	a	name
attribute	with	any	value

soup.select('input[type="button"]') All	elements	named	<input>	that	have	an	attribute
name	type	with	value	button


35

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Emulating	a	web	browser
Sometimes	we	need	to	submit	information	to	a	web	page,
like	a	login	page
We	need	a	web	browser	for	that

	is	an	alternative	to	urllib	that	can	do	all
the	same	things	but	has	more	added	functionality	that	will
allow	us	to	talk	back	to	webpages	without	using	a
standalone	browser,	perfect	for	fetching	web	pages,
clicking	on	buttons	and	links,	and	filling	out	and	submitting
forms

MechanicalSoup


36

http://mattchoplin.com/python_city/index.html
https://github.com/hickford/MechanicalSoup
http://mattchoplin.com/python_city/session900.html#


Installing	MechanicalSoup
You	can	install	it	with	pip:	pip	install	MechanicalSoup	or
within	Pycharm	(like	what	we	did	earlier	with
BeautifulSoup)
You	might	need	to	restart	your	IDE	for	MechanicalSoup	to
load	and	be	recognised


37

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


MechanicalSoup:	Opening	a	web	page
Create	a	browser
Get	a	web	page	which	is	a	Response	object
Access	the	HTML	content	with	the	soup	attribute

import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser(
																	soup_config={'features':'html.parser'})
page	=	my_browser.get("http://mattchoplin.com/python_city/"	\
											"practice/Profile_Aphrodite.htm")
print(page.soup)


38

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


MechanicalSoup:	Submitting	values	to	a
form

Have	a	look	at	this	
The	important	section	is	the	login	form
We	can	see	that	there	is	a	submission	<form>	named
"login"	that	includes	two	<input>	tags,	one	named	username
and	the	other	one	named	password.
The	third	<input>	is	the	actual	"Submit"	button

login	page


39

http://mattchoplin.com/python_city/index.html
https://whispering-reef-69172.herokuapp.com/login
http://mattchoplin.com/python_city/session900.html#


MechanicalSoup:	script	to	login
import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser(
				soup_config={'features':'html.parser'})
login_page	=	my_browser.get(
				"https://whispering-reef-69172.herokuapp.com/login")
login_html	=	login_page.soup

form	=	login_html.select("form")[0]
form.select("input")[0]["value"]	=	"admin"
form.select("input")[1]["value"]	=	"default"

profiles_page	=	my_browser.submit(form,	login_page.url)
print(profiles_page.url)
print(profiles_page.soup)


40

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Methods	in	MechanicalSoup
We	created	a	Browser	object
We	called	the	method	get	on	the	Browser	object	to	get	a
web	page
We	used	the	select()	method	to	grab	the	form	and	input
values	in	it


41

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Interacting	with	the	Web	in	Real	Time
We	want	to	get	data	from	a	website	that	is	constantly
updated
We	actually	want	to	simulate	clicking	on	the	"refresh"
button
We	can	do	that	with	the	get	method	of	MechanicalSoup


42

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Use	case:	fetching	the	stock	quote	from
Yahoo	finance	(1)

Let	us	identify	what	is	needed
What	is	the	source	of	the	data?	

What	do	we	want	to	extract	from	this	source?	
The	stock	price

https://www.bloomberg.com/quote/YHOO:US


43

http://mattchoplin.com/python_city/index.html
https://www.bloomberg.com/quote/YHOO:US
http://mattchoplin.com/python_city/session900.html#


Use	case:	fetching	the	stock	quote	from
Yahoo	finance	(2)

If	we	look	at	the	source	code,	we	can	see	what	the	tag	is	for
the	stock	and	how	to	retrieve	it:

We	check	that	<div	class="price">	only	appears	once	in	the
webpage	since	it	will	be	a	way	to	identify	the	location	of	the
current	price

<div	class="price">40.08</div>


44

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


MechanicalSoup:	script	to	find	Yahoo
current	price

import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser()
page	=	my_browser.get("https://www.bloomberg.com/quote/YHOO:US")
html_text	=	page.soup
#	return	a	list	of	all	the	tags	where
#	the	css	class	is	'price'
my_tags	=	html_text.select(".price")
#	take	the	BeautifulSoup	string	out	of	the
#	first	(and	only)	<span>	tag
my_price	=	my_tags[0].text
print("The	current	price	of	"
						"YHOO	is:	{}".format(my_price))


45

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Repeatedly	get	the	Yahoo	current	price
Now	that	we	know	how	to	get	the	price	of	a	stock	from	the
Bloomberg	web	page,	we	can	create	a	for	loop	to	stay	up	to
date
Note	that	we	should	not	overload	the	Bloomberg	website
with	more	requests	than	we	need.	And	also,	we	should	also
have	a	look	at	their	 	file	to	be	sure	that	what	we
do	is	allowed

robots.txt


46

http://mattchoplin.com/python_city/index.html
https://www.bloomberg.com/robots.txt
http://mattchoplin.com/python_city/session900.html#


Introduction	to	the	time.sleep()	method
The	sleep()	method	of	the	module	time	takes	a	number	of
seconds	as	argument	and	waits	for	this	number	of	seconds,
it	enables	to	delay	the	execution	of	a	statement	in	the
program

from	time	import	sleep
print	"I'm	about	to	wait	for	five	seconds..."
sleep(5)
print	"Done	waiting!"


47

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Repeatedly	get	the	Yahoo	current	price:
script

from	time	import	sleep
import	mechanicalsoup
my_browser	=	mechanicalsoup.Browser()
#	obtain	1	stock	quote	per	minute	for	the	next	3	minutes
for	i	in	range(0,	3):
				page	=	my_browser.get("https://www.bloomberg.com/quote/YHOO:US")
				html_text	=	page.soup
				#	return	a	list	of	all	the	tags	where	the	class	is	'price'
				my_tags	=	html_text.select(".price")
				#	take	the	BeautifulSoup	string	out	of	the	first	tag
				my_price	=	my_tags[0].text
				print("The	current	price	of	YHOO	is:	{}".format(my_price))
				if	i<2:	#	wait	a	minute	if	this	isn't	the	last	request
								sleep(60)


48

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Exercise:	putting	it	all	together
Install	a	new	library	called	requests
Using	 	of	BeautifulSoup,	parse	(that	is,
analyze	and	identify	the	parts	of)	the	image	of	the	day	of

Using	the	get	method	of	the	requests	library,	download	the
image
Complete	the	following	program	

the	select	method

http://xkcd.com/

xkcd_incomplete.py


49

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#/beautifulsoup-select
http://xkcd.com/
http://mattchoplin.com/python_city/exercises/xkcd_incomplete.py
http://mattchoplin.com/python_city/session900.html#


Using	request
You	first	have	to	import	it

If	you	want	to	download	the	webpage,	use	the	get()	method
with	a	url	in	parameter,	such	as:

Stop	your	program	if	there	is	an	error	with	the
raise_for_status()	method

import	requests

res	=	requests.get(url)

res.raise_for_status()


50

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#


Next?	Web	crawling!
From	Wikipedia:	A	Web	crawler	is	an	Internet	bot	which
systematically	browses	the	World	Wide	Web,	typically	for
the	purpose	of	Web	indexing.
How	do	you	navigate	a	website?	For	example,	for	the

	website,	how	could	you	retrieve	all	of	its
images?
Write	down	how	you	would	design	your	program
Write	the	program

http://xkcd.com/


51

http://mattchoplin.com/python_city/index.html
http://xkcd.com/
http://mattchoplin.com/python_city/session900.html#


Solution	fo	Web	Crawling
 Solution


52

http://mattchoplin.com/python_city/index.html
http://mattchoplin.com/python_city/session900.html#

